CHROM. 12,331

GAS CHROMATOGRAPHY OF ESTERS

XIII*. INTERRELATIONSHIP OF EQUIVALENT CHAIN LENGTH (ECL) AND RETENTION INDEX VALUES OF FATTY ESTERS

J. R. ASHES

CSIRO, Division of Animal Production, P.O. Box 239, Blacktown, N.S.W. 2148 (Australia) J. K. HAKEN^{**}

Department of Polymer Science, University of New South Wales, P.O. Box 1, Kensington 2033 (Australia)

and

S. C. MILLS

CSIRO, Division of Animal Production, P.O. Box 239, Blacktown, N.S.W. 2148 (Australia) (Received August 23rd, 1979)

SUMMARY

The interrelationship of equivalent chain length and retention index values of straight- and branched-chain fatty esters is demonstrated on a typical polyester phase (DEGS), a phenyl-substituted polysiloxane (OV-17) and on two low-polarity, thermally stable hydrocarbons. Hydrogenated Apiezon M and the synthetic hydrocarbon $C_{87}H_{176}$ were used, and have lower polarities than the simple Apiezon greases that have been used with fatty esters. These stationary phases have polarities comparable to that of squalane and retention increments of fatty esters may be considered comparatively with those of simple esters which have been compared with squalane.

INTRODUCTION

A variety of relationships have been used to specify retention behaviour and the interrelation of nine of the commoner structure retention parameters was shown mathematically by Guerin and Banks¹. The growing use of automated gas chromatographic equipment with accompanying computer processing of retention data will continue to eliminate tedious measurements from charts and provide data virtually simultaneously with the elution of compounds. The determination of mathematical dead-time has recently been reviewed² and this, together with the interpolation of

^{*} Part XII: see J. K. Haken, A. Nguyen and M. S. Wainwright, J. Chromatogr., 178 (1979) 471.

^{**} To whom correspondence should be addressed.

the results for a compound on a graph prepared with homologous compounds, *e.g.*, *n*-alkanes, to provide retention indices are simple procedures that can be rapidly handled by on-line processors.

Retention indices³ are established by the relationship

$$I = \frac{100(\log t_{RS} - \log t_{RN}) + 100N}{\log t_{R(N+1)} - \log t_{RN}}$$
(1)

where

 t_{RS} = retention of unknown *n*-substrate; t_{RN} = retention of *n*-alkane with *N* carbon atoms; $t_{R(N+1)}$ = retention of *n*-alkane with N + 1 carbon atoms; N = integer equal to carbon number of t_N .

The slope (b) of the semi-logarithmic plot of carbon number versus retention of n-alkanes is common to many of the schemes considered by Guerin and Banks¹ and is determined from two points on a graph prepared with n-alkanes, as shown in eqn. 2, although in a computer plot the slope is determined statistically by considering all of the n-alkanes used in the calibration:

$$b = \frac{\log t_{R(N+x)} - \log t_{R(N)}}{x} \tag{2}$$

where

 $t_{R(N+x)}$ and $t_{R(N)}$ = retention of *n*-alkanes with N and N + x carbon atoms, respectively

The retention index is therefore given by

$$I = \frac{100(\log t_{RN} + N)}{b}$$
(3)

The methylene unit (MU) nomenclature proposed by VandenHeuvel *et al.*⁴ is essentially identical with the retention index system. A salibration using *n*-docosane and *n*-tetracosane was used and the methylene unit multiple d by 100 gives the retention index. The proposal based on a two-point calibration line is less satisfactory than the normally determined multi-point *n*-alkane calibration line.

The difficulty in selecting a reference series suitable for all polarities of solute and solvent is well known. Lorenz and Rogers⁵ considered the effect of sorption phenomena on retention indices and found significant errors when the solute and solvent polarities were widely variant. These findings were similar to those of VandenHeuvel and Horning⁶, who recommended that the polarities of the two species should be similar.

The use of secondary standards with *n*-alkanes has been suggested, and Hawkes⁷ discussed the difficulty of using primary *n*-alkanols as proposed by Grobler⁸, who had criticised the retention index system using polar stationary phases owing to the rapid elution of hydrocarbons and indicated that compounds with very different boiling points cannot be chromatographed under strictly identical conditions. *n*-Propyl ethers were recommended as standards by Hawkes⁷, with ketones and

aldehydes as alternatives. 2-Alkanones had earlier been suggested as standards by Dymond and Kilburn⁹ and the merits of using ketones as secondary reference standards were later detailed by Ackman¹⁰.

The difficulty or impossibility of providing a universally acceptable reference series has been demonstrated by a study of the behaviour of compounds of moderately polar character, *e.g.*, *n*-alkyl esters. With dimethyl polysiloxane, the solvent of lowest polarity included, it is apparent that methyl acetate (b.p. 57.1°) has a retention index of 509, *i.e.*, identical with that of *n*-pentane (b.p. 36.2°), while *n*-hexyl acetate (b.p. 169.2°) has a retention index of 988, *i.e.*, almost identical with that of *n*-decane (b.p. 174.0°), so that for a given retention index the esters have higher boiling points than the comparable *n*-alkanes. With the introduction of two phenyl groups, *i.e.*, using DC-710, the situation is reversed, with methyl acetate (I = 609) being comparable to *n*-hexane (b.p. 69.0°) and *n*-hexyl acetate (I = 1092) being comparable to *n*-undecane (b.p. 196°). With weaker acceptor phases, *i.e.* XE-60, these retention indices are increased to 737 and 1221, respectively, the former being equivalent to an *n*-alkane with a boiling point of approximately 220°. With a more polar stationary phase (Silar 5CP), retention indices of 894 and 1313 are obtained, which are equivalent to *n*-nonane (b.p. 151°) and *n*-tridecane (b.p. 235°), respectively.

The great differences in boiling points at each end of the scale reflect the differences in the slopes for the *n*-alkanes and simple esters on the various stationary phases. As alternative secondary reference standards, acetate esters and symmetrical esters with equal acid and alcohol chain lengths have been suggested¹¹.

The use of esters as standards has found considerable acceptance with fatty esters in the form of the equivalent chain length (*ECL*) relationship developed by Woodford and Van Gent¹² and Miwa *et al.*¹³. The relationship is equivalent to the retention index system, results for an unknown ester being interpolated on graph prepared using homologous long-chain methyl esters.

The relationship is shown in eqns. 4 and 5 and is identical with eqns. 1 and 3 except for the reference series used.

$$ECL = \frac{\log t_{RS} - \log t_{RN} + N}{\log t_{R(N+2)} - \log t_{RN}}$$
(4)

$$ECL = \frac{(\log t_{RN} + N)}{b}$$
(5)

The quantities are as shown above but refer to methyl fatty esters, while the calibration line is usually constructed using even-carbon-number esters.

With computer processing of chromatographic data it is possible to provide retention data relative to multiple reference series and with the retention index and *ECL* representations a simple consideration of the slopes of plots for standard homologous series is necessary.

In this paper we consider the retention of straight- and branched-chain fatty esters with the data expressed in terms of both retention indices and *ECL* values. The data were determined on a typical polyester phase (DEGS) and on two lowpolarity, thermally stable hydrocarbons. Hydrogenated Apiezon M and the synthetic hydrocarbon $C_{87}H_{176}$ were used, and have lower polarities than the simple Apiezon greases that have been used with fatty esters. These stationary phases are comparable

AND <i>n</i> -ALKANES	EQUIVALENT CHAIN LENGTHS (ECL), RELATIVE RETENTIONS (RR) AND RETENTION INDICES (I) OF METHYL, ALKANOATES AND n-ALKANES	LENGTHS	1 (1733)	THEFT	METEN	NA) SNOT) AND R	ETENTIC	N INDICE	S (I) OF	METHYL,	ALKANO	ATES
Compounds	Carbon number	Hydrogenated Aplezon M (230°)	ted Apleza	m m	CarH176 (200°)	200°)		01-17 (200°)	(-00		DEGS (200°)	(°0	
		ECL	RR	I	ECL	RR	-	ECL	RR	1	ECL	RR	1
Methyl		10.00	0.104	1256	10.00	0.075	1266	10,00	160,0	1410	10,00	0.202	1794
esters		12.00	0.221	1457	12.00	0.177	1468	12.00	0.211	1613	12,00	0.347	2003
		14.00	0.471	1659	14.00	0.424	1659	14.00	0,465	1814	14,00	0.585	2201
		16.00	1.000	1859	16.00	1.000	1860	16,00	1.000	2015	16,00	1,000	2401
		18.00	2.120	2059	18.00	2.350	2061	18.00	2.170	2215	18.00	1.703	2599
		20.00	4.479	2257	20.00	5.530	2262	20.00	4.550	2414	20.00	2.907	2796
	ů,	22.00	9,499	2454	22.00	13.109	2460				22,00	4.963	2993
<i>n</i> -Alkanes	ບື	7.43	0,040	1000									
	J.	9.40	0.083	1200				7.96	0,044	1200			
	ů	11.39	0.176	1400				9.89	0.093	1400			
	ບື້	13.37	0.371	1600	13.37	0.342	1600	11.87	0.201	1600			
	u S	15.37	0.789	1800	15.36	0.762	1800	13.86	0.436	1800	10.05	0.205	1800
	ů	17.36	1.670	2000	17.36	1.791	2000	15,85	0.943	2000	11.98	0.343	2000
	с" С	19.34	3,520	2200	19.35	4.184	2200				13.99	0.585	2200
	ບົ້										15.98	0.995	2400
											18.03	1.756	2600
											20.15	3.021	2800
					and the second se			The second secon					

BOUIVALENT CHAIN LENGTHS (FCI) BELATIVE BETENTIONS (BE) AND BETENTION INDICES (1) OF METHAL ALKANOATES

TABLE I

.

in behaviour to squalane and retention increments of fatty esters may be considered comparatively with those of simple esters which have been compared with squalane.

EXPERIMENTAL

Gas chromatography

A Hewlett-Packard 5700A gas chromatograph, fitted with dual flame-ionization detectors, was used. Nitrogen (30 ml/min) was used as the carrier gas, and hydrogen (30 ml/min) and air (200 ml/min) were supplied to the detector. All results were determined isothermally at 200°. Four stationary phases were used, *viz.*, in order of increasing polarity, hydrogenated Apiezon M (refs. 14 and 15), $C_{87}H_{175}$ (ref. 16), OV-17 and DEGS, all coated to the extent of 10% on Chromosorb W AW DMCS (80–100 mesh) and packed into 2 m × 3 mm O.D. stainless-steel columns.

The gas chromatograph was connected to a Hewlett-Packard 3370B integrator with facilities for paper-tape output on a teletype (STC, ASR-33). The chromatograph was also fitted with a Hewlett-Packard 7671A auto-sampler.

Preparation of fatty acid methyl esters from wool wax

Wool from Merino sheep was extracted with light petroleum (b.p. 40-60°), using a Soxhlet apparatus. Small portions of wax were saponified with alcoholic sodium hydroxide solution. Unsaponifiable components were removed with light petroleum, the solution was then acidified and fatty acids together with hydroxy fatty acids were extracted with light petroleum. Fatty acids were separated from hydroxy fatty acids by thin-layer chromatography on silica gel G using *n*-hexanediethyl ether-acetic acid (70:30:1). The bands were detected under UV light after spraying with 0.1% ethanolic 2,7-dichlorofiuorescein and identified using standards (Applied Science Labs., State College, Pa., U.S.A.) run on the same plate. Fatty acid bands were scraped from the plate and extracted with diethyl ether. Methyl esters were prepared by adding diazomethane solution.

Calculations

The data were processed by means of a PDP 11/15 computer fitted with a high-speed paper-tape reader and disc pack (RK05), dead-times being calculated by the procedure of Guardino *et al.*¹⁷.

ECL values were computed from the modified regression equation first obtained by the procedure of Guardino *et al.* from a homologous series of straightchain fatty acid methyl esters. In order to allow for the normal variations that occur with net retention times with time (as up to 36 samples could be automatically processed), all experimental data were converted into retentions relative to methyl palmitate (C16). The net retention time of methyl palmitate was constantly remeasured in each sample, as it either occurred naturally or, if not, was added as an internal standard. Retention indices were similarly determined using homologous n-alkanes.

RESULTS AND DISCUSSION

Retention data for methyl alkanoates and *n*-alkanes on the four stationary phases are shown in Table I as retentions relative to methyl palmitate, *ECL* values

Compound"													
	Hydrogen	Hydrogenated Apiezon M (230°)	M (230°)	Ca1H176 (200°)	(°0'		01-17 (200°)	(°0		DEGS (200°)	0°)		
	ECL	RR	I	ECL	RR	1	ECL	RR	~	ECL	RR	1	
									-				
	9.63	0.091	1217				9.56	0.082	1365				
	66.6	0.104	1252				9.99	0,096	1407				J.]
	10.72	0.137	1325	10.71		1336	10.69	0.127	1481	10.78	0,249	1883	R.
	11.35	0.174	1390										A
	11.62	0.192	1417	11.61	0.153	1425	11.57	0.179	1571	11.55	0.306	1963	SH
	06,11	0.221	1454	11.96	0.177	1455	11.98	0.210	1612				ES,
	12.33		1487										J .
	12.71	0.290	1527	12.69	0.243	1528	12.69	0.276	1683	12.75	0.421	2085	. K
	13.35	0.369	1590				12.99	0.310	1713				. 1
	13.62	0.408	1618	13,61	0.360	1619	13.58	0,390	1772	13.52	0.516	2161	ŦA
	14.00	0.471	1656	13,99	0.424	1658	13.99	0.458	1814	14.00	0.587	2210	K
	14.71	0.615	1727	14,69	0,572	1727	14.70	0.603	1885	14.71	0.709	2280	EN
	15.00	0.618	1756			1752	15.00	0.677					r , S
	15.33	0.777	1789										5. C
	15.62	0.867	1818	15.62	0.849	1820	15.58	0.849	1973	15.48	0.871	2357	2. 1
	16,00	1.00	1856	16.00	1,000	1858	16.00	1,000	2015	16,00	1.000	2409	MI
	16.31	1.119	1886										LL
	16.71	1.304	1927	16,69	1.345	1928	16.69	1.310	2085	16.70	1.206	2478	S
	16.99	1.452	1955				17.00	1,476	2115				

EQUIVALENT CHAIN LENGTHS (ECL), RELATIVE RETENTIONS (RR) AND RETENTION INDICES (I) OF WOOL WAX METHYL

TABLE 11

	2555	2605	2676			2753	2803		2873			2948	3001	3069	3144	3197	3265	3342	3462	
	1.484	1.701	2.056			2.533	2.902		3.511			4.310	4.976	5.985	7.345	8.476	10.198	12.574	17.441	
	17.48	17.99	18.71			19.49	20,00		20.71			21.48	22,02	22.72	23.49	24.02	24.72	25.50	26.93	
	2172	2213	2283			2370			2481											
	1.840	2.158	2.835			3.969														
	17.57	17.98	18.68			19.55														
1978	2016	2059	2128		2175	2220														
	1.957	2.340	3.153		3.633	4.636														
17.24	17.57	18.00	18.68		19.14	19.59														
1982	2016	2056	2126	2157	2175	2216	2254	2281	2321	2374	2386	2412								
1.605	1.823	2.120	2.763	3.101		3.880	4.479	4.962	5.821	7,036										
17.26	17.60	18.00	18.70	10.01	19.19	19.60	19.98	20.26	20.68	21.18	21.31	21.61					-			nown.
n	Iso-Cia	n-Cja	a-C ₁₉	n-C ₁₉	D	iso-C ₁₀	<i>n</i> -C ₃₀	D	<i>a</i> -C ₃₁	D	n	Iso-Cn	n-C ₂₂	a-C23	Iso-C ₂₄	n-C24	a-C ₂₅	Iso-C ₂₆	a-C27	· U = Unknown.

GC OF ESTERS. XIII.

.

and retention indices, and Table II gives similar data for a series of wool wax fatty esters on the same phases.

From Table II, it is evident that on the DEGS column the iso-esters (terminal isopropyl group) have shorter retention times than the anteiso-esters (terminal isobutyl group); the same elution pattern is, as expected, observed with the non-polar stationary phases as the three homologous series are all of the same functional class.

Semi-logarithmic plots for the different series are essentially parallel, and the separation factors are essentially identical, as indicated previously by Gerson¹⁸ and Haken¹⁹. The separation factors are given in Table III; as expected, the separations are enhanced on the stationary phases of lower polarity.

TABLE III

SEPARATION FACTORS OF BRANCHED- AND STRAIGHT-CHAIN FATTY ESTER SERIES

Structure	Hydrogenated Apiezon M	C ₅₇ H ₁₇₅	OV-17	DEGS
n-	2.11	2.35	2.14	1.76
Iso-	2.11	2.35	2.14	1.76
Anteiso-	2.11	2.35	2.14	1.76
U	2.11			

The polarity has a greater influence on the elution of iso-esters than on that of anteiso-esters; this is shown in Table IV, where variations in *ECL* values are given.

TABLE IV

REDUCTION IN RETENTION (ECL UNITS) OF ESTERS ON STATIONARY PHASES OF VARYING POLARITY

Structure	Hydrogenated Apiezon M	C ₈₇ H ₁₇₆	OV-17	DEGS
150-	-0.37	-0.38	-0.43	-0.53
Anteiso-	-0.28	-0.31	-0.32	-0.30
11-	1.00	1.00	1.00	1.00
U	±0.65			

The improved separations on the non-polar columns are further evident by the appearance of a fourth series of minor components on hydrogenated Apiezon M column shown as U in Tables II-IV. The same separation factors are exhibited as for the other series on this stationary phase, and on a non-polar column separation of an unsaturated species would be very unlikely. The composition of wool wax fatty acids has recently been reviewed²⁰ and, in addition to the saturated esters described, series of normal, iso- and anteiso-hydroxy esters are present and the peaks observed are due to small amounts of the materials that remain after the separation reported.

Tables I and II show that the retention is essentially identical on both of the non-polar phases, with retention indices being approximately 250 units or 2.5 carbon numbers greater than the *ECL* values. With increased polarity of the stationary phase,

retention relative to the *n*-alkanes is increased by 410 units or 4.1 carbon numbers on the OV-17 column and 800 units or 8 carbon numbers on the DEGS column. These values show the same trends as in a previous study in which the retention of simple esters on polysiloxane stationary phases of increasing polar character was considered²¹.

The results indicate that the interrelationship of retention indices and *ECL* values or other indices relative to some other homologous calibration line can be readily achieved by using simple data reduction units or by manual operation.

REFERENCES

- 1 M. R. Guerin and C. V. Banks, J. Gas Chromatogr., 4 (1966) 428.
- 2 M. S. Wainwright and J. K. Haken, J. Chromatogr., 184 (1980) in press.
- 3 L. S. Ettre, Anal. Chem., 36 (1964) 31A.
- 4 W. J. A. VandenHeuvel, W. L. Gardner and E. C. Horning, Anal. Chem., 36 (1964) 1550.
- 5 L. J. Lorenz and L. B. Rogers, Anal. Chem., 43 (1971) 1593.
- 6 W. J. A. VandenHeuvel and E. C. Horning, Biochim. Biophys. Acta, 64 (1962) 41.
- 7 S. J. Hawkes, J. Chromatogr. Sci., 10 (1972) 535.
- 8 A. Grobler, J. Chromatogr. Sci., 10 (1972) 128.
- 9 H. F. Dymond and K. D. Kilburn, in A. B. Littlewood (Editor), Gas Chromatography 1966, Institute of Petroleum, London, 1967, p. 353.
- 10 R. G. Ackman, J. Chromatogr. Sci., 10 (1972) 536.
- 11 J. K. Haken, J. Chromatogr., 99 (1974) 329.
- 12 F. P. Woodford and C. M. van Gent, J. Lipid Res., 1 (1960) 188.
- 13 T. K. Miwa, K. L. Mikoljczak, F. P. Earle and I. A. Wolft, Anal. Chem., 32 (1960) 1739.
- 14 F. Vernon and C. O. E. Ogundipe, J. Chromatogr., 132 (1977) 181.
- 15 J. K. Haken and F. Vernon, J. Chromatogr., 186 (1979) 89.
- 16 J. K. Haken and D. K. M. Ho, J. Chromatogr., 142 (1977) 203.
- 17 X. Guardino, J. Albaigés, G. Firpo, R. Rodríguez-Viñals and M. Gassiot, J. Chromatogr., 118 (1976) 13.
- 18 T. Gerson, J. Chromatogr., 6 (1961) 178.
- 19 J. K. Haken, J. Chromatogr., 26 (1967) 17.
- 20 K. Motiuk, J. Amer. Oil Chem. Soc., 56 (1979) 55.
- 21 J. R. Ashes and J. K. Haken, J. Chromatogr., 101 (1974) 103.